Correlated Dirac semimetal by periodized cluster dynamical mean-field theory
نویسندگان
چکیده
منابع مشابه
Strongly Correlated Superconductivity: a plaquette Dynamical mean field theory study
We use cluster Dynamical Mean Field Theory to study the simplest models of correlated electrons, the Hubbard model and the t-J model. We use a plaquette embedded in a medium as a reference frame to compute and interpret the physical properties of these models. We study various observables such as electronic lifetimes, one electron spectra, optical conductivities, superconducting stiffness, and ...
متن کاملDynamical Mean-field Theory for Correlated Lattice Fermions
Dynamical mean-field theory (DMFT) is a successful method to investigate interacting lattice fermions. In these lecture notes we present an introduction into the DMFT for lattice fermions with interaction, disorder and external inhomogeneous potentials. This formulation is applicable to electrons in solids and to cold fermionic atoms in optical lattices. We review here our investigations of the...
متن کاملNonequilibrium dynamical mean-field theory of strongly correlated electrons
We present a review of our recent work in extending the successful dynamical mean-field theory from the equilibrium case to nonequilibrium cases. In particular, we focus on the problem of turning on a spatially uniform, but possibly time varying, electric field (neglecting all magnetic field effects). We show how to work with a manifestly gauge-invariant formalism, and compare numerical calcula...
متن کاملDynamical mean-field theory for strongly correlated inhomogeneous multilayered nanostructures
Dynamical mean field theory is employed to calculate the properties of multilayered inhomogeneous devices composed of semi-infinite metallic lead layers coupled via barrier planes that are made from a strongly correlated material (and can be tuned through the metal-insulator Mott transition). We find that the Friedel oscillations in the metallic leads are immediately frozen in and do not change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2015
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.92.155127